Growth, Environment and Efficiency: California's Water Future

Prof. Dave Sunding October 7, 2006

Agricultural and total water usage in CA

Agricultural water usage through 2030

- Market forces
 - Crop shifts
 - Irrigation efficiency
- Opens potential for
 - Transfers
 - Basin recharge

Population growth through 2030: Most growth away from coast

Per capita urban use has only recently begun to fall; inland use is much higher

Urban demand growth is highly variable

Other anticipated adjustments

- Increased environmental flows (+ 1 maf?)
- Reduced Colorado River use (- 0.8 maf)
- Reduced groundwater overdraft (1-2 maf?)

State recognizes that many options available for generating new supplies

Additional annual water available by 2030 for California (millions of acre-feet per year)

Some incremental water sources are relatively low cost

	Cost/af
Cloud seeding	\$19 *
Desalination (seawater)	\$800 - \$2,000 *
Ag. use efficiency	\$175 - \$450 *
Ag. land fallowing	\$75 - \$400 *
Surface storage	\$150 - \$2,500 *
Recycled muni water	\$300 - \$1,300 <mark>*</mark>
Conjunctive use & GW banking	\$110 +*
Urban conservation	\$220 - \$530 *

California Water Plan, 2005 CALFED, 1999 author estimates

Irrigation water application has hovered in range of 3.5 – 3.6 acre-ft/acre since 1960s

Agricultural efficiency is not well understood from a policy perspective

- Usual view is that farm efficiency improvements do not achieve much since they reduce return flows, which are usable
- Value of water depends on where it is located, and its quality
- Efficiency investments can increase yields do more than just reduce return flows
- Need for more research on this topic

Water transfers are an important part of reconciling supply-demand imbalances

- Wide variety of deals; permanent vs. temporary; firm vs. interruptible; fallowing vs. efficiency conservation
- Great interest in agriculture to sell water; also lots of trades within agriculture
- Suppose 3 maf transferred from ag to urban uses by 2030; at current prices, this is a \$500
 - \$900 million annual market in California

Infrastructure improvements may be more important than new storage

- Huge disparities in regional water productivity, even within agriculture
- North-south and east-west differences
- Productivity differences persist due to nature of water rights and lack of conveyance opportunities
- Almost total lack of private investment in water infrastructure
- No regulatory apparatus for common carriers in water and no market for wheeling

Groundwater banking and conjunctive use can enhance supply at reasonable cost

- Historical overdraft has created lots of storage space
- Simple banking can create opportunities for arbitrage
- Development of wellfields can also allow for more aggressive management of surface storage facilities
- A major problem with groundwater storage is flexibility

Curbing urban outdoor use may be low-hanging fruit

- Outdoor water use in rapidly growing inland regions often exceeds 50% of total use
- Residential irrigation efficiencies very low
- Urban utilities are exploring use of "smart"
 ET controllers field trial savings 15-25%
- Need better data on weather and water needs of landscape plants (CIMIS)

Urban recycling is promising

- Urban conservation is desirable since it creates water in exactly the right place; no need for expensive conveyance
- Recycled water can be used for landscape irrigation and industrial applications
- Cost is relatively modest, ranging from \$300 to \$1,300/af

Improvements in information and modeling can aid more aggressive management

- Disparate sources of of information on hydrology, geology, economics, land use, biology and other relevant factors
- Also lack of integration among system models
- Many opportunities for analysis and management are lost
- UCB partnership with Microsoft

California Water: A Non-Crisis

- Much room for more efficient management
- Some increase in storage may be needed, particularly in the face of climate change
- State should aggressively push urban recycling, desalination is a supply of last resort
- Investments in conveyance infrastructure also have high returns

Berkeley Water Center

 The Berkeley Water Center's mission is to study the most challenging problems facing water resource managers, and to develop 21st century tools to solve them.

Berkeley Water Center

- BWC is a joint venture among COE, CNR and LBNL.
- Over 100 Berkeley faculty and LBL researchers involved in water
- Span over a dozen departments and academic disciplines

Research Thrust Areas

- Digital Watersheds
- Cal 2030
- Clean Water and Sanitation

Initial Funding

- Industrial Support (\$2.0 million)
- Foundations (\$2.2 million)
- Government (\$1.4 million)
- Campus/LBL (\$0.9 million)
- Total: \$6.5 million